The Spectrum for 3-Way k-Homogeneous Latin Trades

نویسندگان

  • Trent G. Marbach
  • Lijun Ji
چکیده

A μ-way k-homogeneous Latin trade was defined by Bagheri Gh, Donovan, Mahmoodian (2012), where the existence of 3-way k-homogeneous Latin trades was specifically investigated. We investigate the existence of a certain class of μ-way k-homogeneous Latin trades with an idempotent like property. We present a number of constructions for μ-way k-homogeneous Latin trades with this property, and show that these can be used to fill in the spectrum of 3-way k-homogeneous Latin trades for all but 196 possible exceptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the intersection of three or four transversals of the back circulant latin squares

Cavenagh and Wanless [Discrete Appl. Math. 158 no. 2 (2010), 136–146] determined the possible intersection of any two transversals of the back circulant latin square Bn, and used the result to completely determine the spectrum for 2-way k-homogeneous latin trades. We generalize this problem to the intersection of μ transversals of Bn such that the transversals intersect stably (that is, the int...

متن کامل

On the existence of 3-way k-homogeneous Latin trades

A μ-way Latin trade of volume s is a collection of μ partial Latin squares T1, T2, . . . , Tμ, containing exactly the same s filled cells, such that if cell (i, j) is filled, it contains a different entry in each of the μ partial Latin squares, and such that row i in each of the μ partial Latin squares contains, set-wise, the same symbols and column j, likewise. It is called μ–way k–homogeneous...

متن کامل

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

Minimal homogeneous latin trades

A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square.A d-homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either 0 or d times. In this paper we give a construction for minimal d-homogeneous latin trades of size dm, for every integer d 3, and m 1.75d2 + 3. We also improve this b...

متن کامل

Possible volumes of t-(v, t+1) Latin trades

The concept of t-(v, k) trades of block designs previously has been studied in detail. See for example A. S. Hedayat (1990) and Billington (2003). Also Latin trades have been studied in detail under various names, see A. D. Keedwell (2004) for a survey. Recently Khanban, Mahdian and Mahmoodian have extended the concept of Latin trades and introduced t-(v, k) Latin trades. Here we study the spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015